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Abstract. Sion and Wolfe (1957) presented a two-person zero-sum game on

the unit square without a value. In the present paper, we analyze finite-grid

approximations of the Sion-Wolfe game. We find that, as the number of grid

points tends to infinity and the payoff function approaches that of the infinite

game, the limiting value of finite approximations may lie within, on the boundary

of, or even outside the interval defined by the lower and upper values of the

infinite game. Although these observations can be attributed to offsetting effects,
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zero-sum games, when using finite approximations for the analysis of infinite
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1 Introduction

In the early years of game-theoretic research, fundamental contributions estab-

lished the existence of mixed-strategy solutions for two-person zero-sum games

under increasingly general conditions (von Neumann, 1928; Ville, 1938; Wald,

1945; Glicksberg, 1952; Fan, 1952; Nikaidô, 1954). This sequence of positive

results was interrupted when Sion and Wolfe (1957) presented a “topologically

simple” game on the unit without a value. The non-existence result reveals an

important limitation of the theory of infinite games. Since such limitations do

not arise in finite games, one might hope that an analysis of finite-grid approxi-

mations, as suggested by a large body of prior work aiming at the establishment

of conditions sufficient for the existence of a solution (Ville, 1938; Nikaidô, 1954;

Dasgupta and Maskin, 1986; Simon, 1987; Hellwig et al., 1990), might similarly

provide insights into the strategic nature of infinite games without a value.

In this paper, we explore this idea by considering finite approximations of

the Sion-Wolfe game. Instead of probability measures on the unit interval, we

consider probability distributions over a finite grid. Moreover, to preserve quali-

tative properties of the infinite game, we adjust the payoff function in the finite

approximation where needed. Our main observation is that, as the number of

grid points tends to infinity and the payoff function approaches that of the con-

tinuous game, the values of the finite approximations need not align with the

lower and upper values of the infinite game. Instead, we find that the limiting

values of finite approximations may fall within, on the boundary of, or even out-

side the interval spanned by the infinite-game lower and upper values. This casts

doubt on the idea that finite approximations are generally suitable for predicting

the outcome of an infinite game.
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To understand why the limits of finite game values are not indicative of the

solution of the infinite game, we consider variants of the original game where

only one player is restricted to choosing from a finite grid, similar to Liang et al.

(2023). Then, we study the robustness of the Sion-Wolfe game by shifting the

short diagonal in the definition of the kernel. We find that the Sion-Wolfe game is

highly sensitive to such perturbations. Equipped with these findings, we decom-

pose the observed discrepancy between the finite-game and infinite-game values

as a sum of several offsetting effects. Some of these effects mirror those in Ville’s

(1938) proof of the minimax theorem for continuous payoff functions defined

on the unit square, where they were shown to vanish. However, to explain the

anomaly that the limiting value of the finite approximations may lie even outside

the “interval of indeterminacy,” we identify additional effects. Specifically, those

additional effects are seen to be caused by kernel approximations that might look

innocuous at first sight.

The paper proceeds as follows. Section 2 reviews the Sion-Wolfe game. In

Section 3, we consider finite approximations. Section 4 discusses the findings.

The related literature is reviewed in Section 5. Section 6 concludes.

2 Review of the Sion-Wolfe Game

The game in question, illustrated in Figure 1, lives on the unit square (0 ≤ x ≤ 1

and 0 ≤ y ≤ 1), having the payoff kernel

K(x, y) =


1 if y < x or y > x+ 1

2

0 if y = x or y = x+ 1
2

−1 if x < y < x+ 1
2
.

One of the players, the maximizer, chooses x, while the other player, the mini-

mizer, chooses y.
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Figure 1: The Sion-Wolfe game.

Let f and g denote probability measures on the unit interval. We will write

f(M) for the probability mass assigned by f to a measurable set M ⊆ [0, 1]. If

M = {x0} is a singleton with x0 ∈ [0, 1], then we will write alternatively f{x0}

for the probability mass assigned by f to x0. Analogous notation will be used

for g. The lower and the upper values of the game are defined as

v = sup
f

inf
g

∫∫
K(x, y) df(x)dg(y), and

v = inf
g
sup
f

∫∫
K(x, y) df(x)dg(y),

respectively. Intuitively, v corresponds to the expected payoff in a sequential

setting in which the maximizer moves first by choosing a mixed strategy f , and

the minimizer, observing f (but not its pure-strategy realization), moves second

by choosing a mixed strategy g. Similarly, v corresponds to the expected payoff

in a sequential setting in which the minimizer moves first and the maximizer

second. As suggested by this interpretation, we certainly have v ≥ v. The game

is said to have a value if v = v.

The definitions of lower and upper value do not assume that the respective

optimization problems admit a solution. If, however, the supremum is attained

in the definition of v, then the corresponding f is called an optimal strategy for
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the maximizer. An analogous terminology applies to the minimizer.

Proposition 1 (Sion and Wolfe, 1957).

(i) v = 1
3
≈ 0.33, and an optimal strategy for the maximizer is given by f{0} =

f{1
2
} = f{1} = 1

3
.

(ii) v = 3
7
≈ 0.43, and an optimal strategy for the minimizer is given by g{1

4
} =

1
7
, g{1

2
} = 2

7
, and g{1} = 4

7
.

Proof. See Sion and Wolfe (1957).

Thus, v < v, i.e., the game does not have a value. This fact is remarkable,

despite earlier examples of non-existence (Ville, 1938; Wald, 1945), because the

Sion-Wolfe game admits an interpretation in terms of a Colonel Blotto game

with two battlefields and a head start for one player (Sion and Wolfe, 1957,

pp. 301-302; Aspect and Ewerhart, 2022). The example therefore shows that

non-existence can arise even in games with practical significance.

For the subsequent analysis (esp. Example 1 below), it will be relevant that

the maximizer has an alternative optimal strategy given by f{0} = 1
3
and f{1} =

2
3
. Similarly, the minimizer has an alternative optimal strategy in which the

mass point given by g{1
4
} = 1

7
is slightly shifted up or down. This is relevant

for our study because, under the assumptions that we are going to impose, these

alternative strategies will be available in approximating discretizations whereas

this need not be so for the strategies characterized in Proposition 1.

3 Finite Approximations

This section analyzes finite approximations of the Sion-Wolfe game. We start

with a “canonical” approximation (Subsection 3.1), take the limit (Subsection

3.2), and then explore several alternative approximations (Subsection 3.3).
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Figure 2: A finite approximation for n = 8.

3.1 A “Canonical” Approximation

Suppose that the players are restricted to choosing their strategies from a finite,

equidistant grid over [0, 1], defined by

a0 < a1 < . . . < an,

where aν = ν
n
, for ν ∈ {0, 1, . . . , n}, for some positive integer n. Computing

payoffs using any approximating kernel Kn : [0, 1] × [0, 1] → R of the infinite

game defines a finite two-person zero-sum game for any n. Since the strategy

sets are finite, the supremum and infimum operators in the definition of the

game values reduce to the maximum and minimum, respectively. Thus, by von

Neumann’s (1928) minimax theorem, each finite approximation has as a value

v(n). Moreover, optimal strategies for maximizer and minimizer exist and are

given by probability measures fn and gn over the finite grid {a0, . . . , an}, re-

spectively. We may then consider the limiting value of the finite approximation,

v∗ = limn→∞ v(n), provided the limit exists.
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The payoff matrix of the finite approximation for n = 8 and Kn = K is illus-

trated in Figure 2. In line with the conventions used for the infinite game, we

assume that the maximizing player chooses columns and the minimizing player

chooses rows. To identify candidate solutions of such games, we found it instruc-

tive to apply iterated elimination of weakly dominated strategies (Aspect and

Ewerhart, 2022). Moreover, at the time of writing, there exists a very convenient

web tool that computes the complete solution of a given bimatrix game (Avis

et al., 2010). The following proposition characterizes the game value and optimal

strategies of the finite approximation in the general case where n is even.

Proposition 2. (Finite approximation, n even) Let n = 2k, for some integer

k ≥ 2. Then,

(i) the value of the finite approximation is v0(n) = 2
5
= 0.40;

(ii) optimal strategies are unique, given for the maximizer by fn{a0} = fn{ak−1} =

1
5
and fn{an} = 3

5
, and for the minimizer by gn{ak−1} = gn{ak} = 1

5
and

gn{an} = 3
5
.

Proof. Figure 3 shows the relevant parts of the payoff matrix for n = 2k ≥ 4,

where boxes corresponding to outcomes with positive probability in the candidate

strategies are shaded. Suppose the minimizer plays gn. Then, any pure strategy

x ∈ {a0, ak−1, an} yields an expected payoff of 2
5
. Any alternative strategy for

the maximizer, be it x ∈ {a1, . . . , ak−2}, x = ak, or x ∈ {ak+1, . . . , an−1}, is

not a best response. Next, suppose that the maximizer plays fn. Then, any

y ∈ {ak−1, ak, an} yields an expected payoff of 2
5
. Any alternative pure strategy

for the minimizer, whether y = a0, y ∈ {a1, . . . , ak−2}, y ∈ {ak+1, . . . , an−2}, or

y = an−1, fails to be a best response. Thus, the game indeed has the value 2
5
.

Moreover, by exchangeability, the support of any optimal strategy is contained
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in {a0, ak−1, an} for the maximizer and in {ak−1, ak, an} for the minimizer. As

the submatrix of the payoff matrix restricted to these strategies is invertible,

optimal strategies are indeed unique.

Figure 3: Proof of Proposition 2.

3.2 Taking the Limit

The value of the “canonical” approximation, v0(n) = 2
5
, remains constant when

we raise n = 2k. Thus, comparing with Proposition 1,

v < lim
n→∞

v0(n) < v,

i.e., the limiting value of the finite approximations v∗ = limn→∞ v(n) lies, in the

case of the “canonical” approximation, strictly inside the interval formed by the

lower and upper values of the infinite game.

What about the limit of strategies? The optimal strategies found in Propo-

sition 2 are unique. Moreover, these optimal strategies assign probability 1
5
to
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column x = ak−1 and row y = ak−1 which, for example, become suboptimal

when n doubles. As n increases, the strategy ak−1 approaches
1
2
, so regardless of

how the limit is taken, the limiting strategy profile in the infinite game loses key

qualitative properties of the finite solutions.

A rigorous analysis of the limiting behavior requires the specification of a

topology on the space of probability measures. Since Glicksberg (1952), it has

been standard to use the weak* topology, defined as the coarsest topology that

renders all mappings f 7→
∫
φ(x)df(x) continuous, where φ : [0, 1] → R may

be an arbitrary continuous function on the unit interval. If the limit of the

approximating strategies is taken with respect to the weak* topology, then the

corresponding limit strategies are given as f{0} = f{1
2
} = 1

5
and f{1} = 3

5
for

the maximizer, and by g{1
2
} = 2

5
and g{1} = 3

5
for the minimizer. These limit

strategies are, however, not optimal in the infinite game. Indeed, by choosing

x = 1, the maximizer secures an expected payoff of 3
5
> v. Similarly, by choosing

y = 1, the minimizer ensures an expected payoff of 1
5
< v.

Alternatively, one may take the limit in the space of finitely additive set

functions equipped with the topology of pointwise convergence. By definition,

this is the coarsest topology for which all mappings f 7→
∫
M
df(x) are continuous,

for any measurable set M ⊆ [0, 1]. For instance, the limit set function for the

maximizer is characterized by f{0} = f
(
(1
2
− ε, 1

2
)
)
= 1

5
for any sufficiently small

ε > 0 and f{1} = 3
5
. The limit of the approximating optimal strategies is not a

mixed strategy because the property of σ-additivity is lost. Indeed,

f
(
(0,

1

2
)
)
=

1

5
̸= 0 =

∞∑
m=1

f
(
(
1

2
− 1

m+ 1
,
1

2
− 1

m+ 2
)
)
.

Thus, the limiting set function is merely finitely additive (Yanovskaya, 1970). As

suggested by the discussion so far, this means that it is feasible to place mass ar-
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bitrarily close to, but still below 1
2
. While this idea may be intuitively appealing,

there is a downside of admitting finitely additive set functions. Specifically, as

Kindler (1983) explains, expected payoffs need not be well-defined if both players

use such generalized strategies, since the order of integration may matter in the

computation of expected payoffs. Intuitively, it is unclear which player wins, and

with what probability, if both players bid as close as possible, but still strictly

below 1
2
.

Figure 4: Finite approximations when n = 9.

3.3 Alternative Approximations

We now consider the case where n = 2k+1 is odd. Here, identifying a “canonical”

approximation is less straightforward. Figure 4 illustrates a variety of approxi-

mations in the case n = 9 and k = 4. In panel (a), we depict the payoff matrix

in the case in which the original kernel is kept. However, the short diagonal,
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defined by the set of strategy combinations (x, y) satisfying y = x+ 1
2
, vanishes,

because when n is odd, there is no solution in the finite lattice. In panels (b)

through (d), the original kernel K has been modified to reintroduce the short

diagonal. In panel (b), this is done symmetrically. In panels (b) and (c), how-

ever, an advantage is given to either the minimizer or the maximizer. Kernels

on the unit square extending these examples to general odd n = 2k+1 are given

as follows:

Ka
n(x, y) = K(x, y)

Kb
n(x, y) =


1 if y < x or y > x+ k+1

n

0 if y = x or x+ k
n
≤ y ≤ x+ k+1

n

−1 if x < y < x+ k
n

Kc
n(x, y) =


1 if y < x or y > x+ k+1

n

0 if y = x or y = x+ k+1
n

−1 if x < y < x+ k+1
n

Kd
n(x, y) =


1 if y < x or y > x+ k

n

0 if y = x or y = x+ k
n

−1 if x < y < x+ k
n

It should be noted that, in contrast to the case where n is even, the kernels

defined above may depend on n. In analyzing the approximations for odd n, we

focus on the game values, while optimal strategies are characterized in the proof.

Proposition 3 (Finite approximation, n odd). Let n = 2k+1 for some inte-

ger k ≥ 2. Then, the respective values of the finite approximations corresponding

to kernels Ka
n, K

b
n, K

c
n, and Kd

n are given by va(n) = 3
7
≈ 0.43, vb(n) = 2

5
= 0.40,

vc(n) = 1
3
≈ 0.33, and vd(n) = 1

2
= 0.50.

Proof. For each of the four kernels, referred to below as cases, the proof proceeds

by identifying a pair of mutual best responses.
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Case a. Suppose that the minimizer selects gn{ak} = 2
7
, gn{ak+1} = 1

7
, and

gn{an} = 4
7
. Then, from Figure 5, it is evident that any x ∈ {a1, . . . , ak−1} is

strictly inferior to x̂ = a0, while x = ak+1 as well as any x ∈ {ak+2, . . . , an−1} are

strictly inferior to x̂ = an. Hence, the maximizer’s pure best responses are a0,

ak, and an. Next, suppose that the maximizer selects fn{a0} = 1
7
, fn{ak} = 2

7
,

and fn{an} = 4
7
. Then, y = a0 is strictly inferior to ŷ = ak, and the same is true

for any y ∈ {a1, . . . , ak−1}. In contrast, any y ∈ {ak, . . . , an} is a best response

for the minimizer. In particular, ak, ak+1, and an are best responses.

Figure 5: Case a.

Case b. See Figure 6. If the minimizer chooses gn{ak−1} = gn{ak} = 1
5
and

gn{an} = 3
5
, then any x ∈ {a0, ak, an} yields an expected payoff of 2

5
. Alternative

strategies such as x ∈ {a1, . . . , ak−2}, x = ak, and x ∈ {ak+2, . . . , an−1} yield

a strictly lower expected payoff. The strategy x = ak+1 is an alternative best

response. If the maximizer chooses fn{a0} = fn{ak−1} = 1
5
and fn{an} = 3

5
,

then any y ∈ {ak−1, ak, an} yields an expected payoff of 2
5
. Strategy y = ak+1

is an alternative best response. Any other strategy, be it y ∈ {a0, . . . , ak−2} or

y ∈ {ak+2, . . . , an} is not a best response for the minimizer.

Case c. See Figure 7. If the minimizer selects gn{ak} = 1
3
and gn{an} = 2

3
,

12



Figure 6: Case b.

then both x = a0 and x = an yield an expected payoff of 1
3
. Strategies x ∈

{a1, . . . , ak−2} are alternative best responses. The strategy x = ak−2, and any

x ∈ {ak, . . . , an−2} is not a best response. If the maximizer chooses fn{a0} = 1
3

and fn{an} = 2
3
, then both y = ak−1 and y = an yield an expected payoff of 1

3
.

Strategies y ∈ {a1, . . . , ak−2} are alternative best responses. Any other strategy,

be it y = a0, y = ak, or y ∈ {ak+1, . . . , an−1} is not a best response for the

minimizer.

Figure 7: Case c.
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Case d. See Figure 8. If the minimizer selects gn{ak} = gn{an} = 1
2
, then

any x ∈ {a0, ak, an} yields an expected payoff of 1
2
. The strategy x = ak+1 is an

alternative best response, while x ∈ {a1, . . . , ak−1} and x ∈ {ak+2, . . . , an−1} yield

a strictly lower expected payoff. If the maximizer selects fn{a0} = fn{ak} = 1
4

and fn{an} = 1
2
, then both y = ak and y = an yield an expected payoff of

1
2
. Strategies y ∈ {a1, . . . , ak−1} and y ∈ {ak+1, . . . , an−2} are alternative best

responses, while y = a0 or y = an−1 is not a best response for the minimizer.

Figure 8: Case d.

Thus, when the original kernel is kept, corresponding to panel (a) in Figure 4,

the value of the finite approximation equals the upper value of the infinite game,

i.e., va(n) = v. In the unbiased case, corresponding to panel (b), the game value

matches the case of even n, lying strictly within the interval formed by the lower

and upper values of the infinite game. If the kernel is biased in favor of the

minimizer, corresponding to panel (c), we obtain the lower value of the infinite

game, i.e., vc(n) = v. Somewhat unexpectedly, however, if the kernel is biased

toward the maximizer, corresponding to panel (d), the game value of the finite

approximation strictly exceeds the upper value of the infinite game, i.e.,

v < lim
n→∞

vd(n).
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As mentioned in the Introduction, this possibility is undesirable because it im-

plies that values of the finite games do not even allow one to put a bound on

infinite-game lower or upper values.

Dasgupta and Maskin (1986) noted that the Sion-Wolfe game does not admit

an ε-equilibrium, for ε > 0 small enough. However, there is no connection

between the limiting values not corresponding with the continuous case and the

lack of ε-equilibria for the Sion-Wolfe game. Instead, as shown by Tijs (1977),

the non-existence of ε-equilibria is a general property of two-person zero-sum

games that do not have a value. In fact, a two-person zero-sum game has a value

if and only if it admits an ε-equilibrium for any ε > 0. In particular, there is no

obvious link between the non-existence of ε-equilibria to the anomaly captured

by Proposition 3(d).

4 Discussion

In this section, we examine the observed differences between the finite-game

limiting values and the infinite-game lower and upper values. We first derive

the solution of the game in which only one player is restricted to choosing from

a finite grid (Subsection 4.1). Next, we study the robustness of the Sion-Wolfe

game (Subsection 4.2). Finally, we use the insights thereby obtained to examine

the anomaly observed in Proposition 3 (Subsection 4.3).

4.1 Restricting One Player’s Strategy Choice

Unlike the previous setup, we now assume that one player’s strategy is restricted

to a finite grid, while the other player’s strategy remains unrestricted. Consider

first the case where the maximizer is restricted, corresponding to panel (a) of

Figure 9. Let n be a positive integer, and let Kn be an approximating kernel,
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Figure 9: One player’s strategy is restricted to the finite grid.

which is henceforth assumed to be measurable and bounded on the unit square.

Then,

v(n) = sup
fn

inf
g

∫∫
Kn(x, y)dfn(x)dg(y)

is the (lower) value of the game in which the maximizer chooses a probability

measure fn over the finite grid {a0, . . . , an}, while the minimizer chooses a prob-

ability measure g over the unit interval [0, 1]. Similarly, consider the case where

the minimizer is restricted, corresponding to panel (b). Then,

v(n) = inf
gn

sup
f

∫∫
Kn(x, y)df(x)dgn(y)

is the (upper) value of the game in which the minimizer chooses a probabil-

ity measure gn over the finite grid {a0, . . . , an}, while the maximizer chooses a

probability measure f over the [0, 1].

Peck (1958) established a general minimax theorem for games in which the

strategy set of one player is finite. While that result assumes that both players

choose finitely supported probability measures ffin and gfin, it still implies that

the two games just introduced have a value. For example, for the game in which
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the maximizer is restricted, we have

sup
fn

inf
g

∫∫
Kn(x, y)dfn(x)dg(y) = sup

fn

inf
gfin

∫∫
Kn(x, y)dfn(x)dg

fin(y)

≥
Peck (1958)

inf
gfin

sup
fn

∫∫
Kn(x, y)dfn(x)dg

fin(y)

≥ inf
g
sup
fn

∫∫
Kn(x, y)dfn(x)dg(y),

which proves the claim. The argument for the game in which the minimizer is

restricted is analogous. The relevance for the present study is that the values v(n)

and v(n) are game values, i.e., there are no counterparts worthwhile studying.

The following result characterizes the solution of these games, where attention

is restricted to the case of even n.

Proposition 4. Let n = 2k, for some integer k ≥ 1. Then,

(i) v(n) = 1
3
, with optimal strategies for the maximizer given by fn{a0} = 1

3

and fn{an} = 2
3
, and for the minimizer by g{n−1

2n
} = 1

3
and g{1} = 2

3
;

(ii) v(n) = 3
7
, with optimal strategies for the maximizer given by f{0} = 2

7
,

f{n−1
2n

} = 1
7
, and f{1} = 4

7
, and for the minimizer by gn{ak−1} = 1

7
,

gn{ak} = 2
7
, and gn{an} = 4

7
.

Proof. (i) Suppose the minimizer plays g. Then, as is evident from Figure 9(a),

the maximizer’s expected payoff is 1
3
for any pure strategy x ∈ {a0, . . . , ak−1}.

The same is true for x = ak and x = an. In contrast, the expected payoff from

any x ∈ {ak+1, . . . , an−1} is strictly lower. Hence, fn is a best response to g.

Next, assume that the maximizer chooses fn. Then, the expected payoff is 1
3

for y ∈ (0, 1
2
) and for y = 1, whereas the expected payoff is strictly higher for

any choice of y ∈ [0, 1]. Hence, g is also a best response to fn. (ii) See Figure

9(b). If the minimizer chooses gn, then the maximizer’s expected payoff is 3
7
from
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pure strategies x = 0, x ∈ (k−1
n
, 1
2
), and x = 1, whereas the expected payoff is

strictly lower for any other pure strategy. Noting that n−1
2n

lies exactly halfway

between k−1
n

and 1
2
, we see that f is a best response to gn. On the other hand,

if the maximizer plays f , then the expected payoff is 3
7
for the pure strategies

y = a0, y ∈ {a1, . . . , ak}, and y = an, while the expected payoff is strictly

higher otherwise. Thus, ak−1, ak, and an are best responses for the minimizer,

completing the proof.

These observations are in line with the intuition, reviewed in the previous section,

that the outcome of the Sion-Wolfe game hinges on which player will be able to

bid closest to, but still below 1
2
. Specifically, if the maximizer’s choice is restricted

to the finite grid, while the minimizer’s choice is unrestricted, then the game value

equals the lower value of the Sion-Wolfe game, i.e., v(n) = v. Intuitively, the

maximizer has an incentive to marginally overbid the minimizer’s lower bid, but

is unable to do so because ak−1 <
n−1
2n

< ak = 1
2
, i.e., because of the restrictions

imposed by the finite grid. However, if the minimizer’s choice is restricted to

the finite grid, while the maximizer’s choice is unrestricted, then the game value

equals the upper value of the Sion-Wolfe game, i.e., v(n) = v. In this case, it is

the minimizer who has an incentive to overbid the maximizer’s bid n−1
2n

, but is

unable to do so.

4.2 Robustness of the Sion-Wolfe Game

Consider the kernel

Kα(x, y) =


1 if x > y or x < y + α

0 if x = y or x = y + α

−1 if x < y < x+ α,

where α ∈ (0, 1) is a parameter that corresponds to the vertical position of the

short diagonal. The Sion-Wolfe game has α = 1
2
. In the case α > 1

2
, illustrated
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in panel (a) of Figure 10, the short diagonal is shifted up compared to the Sion-

Wolfe game. An example is Kc
n, where α = k+1

n
. In the case α < 1

2
, illustrated in

panel (b), the short diagonal is shifted down. An example is Kd
n, where α = k

n
.

Figure 10: Variants of the Sion-Wolfe game.

As our next result reveals, the non-existence of a value in the case α = 1
2

is an isolated phenomenon. For this, let v(Kα) and v(Kα) denote the infinite-

game lower and upper values associated with the kernel Kα. It will be useful

to describe a continuum of optimal strategies. Specifically, as in the discussion

following Proposition 1, this will allow us to choose an optimal strategy from an

approximating grid (cf. Example 2 below).

Proposition 5.

(i) If α ∈ (1
2
, 1), then v(Kα) = v(Kα) = 1

3
, with optimal strategies for the

maximizer given by f{0} = 1
3
and f{1} = 2

3
, and for the minimizer by

g{α− ε} = 1
3
and g{1} = 2

3
, for any sufficiently small ε > 0;

(ii) if α ∈ (1
3
, 1
2
), then v(Kα) = v(Kα) = 1

2
, with optimal strategies for the

maximizer given by f{0} = f{1
2
+ ε} = 1

4
and f{1} = 1

2
, and for the
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minimizer by g{α− ε} = g{2α− ε} = 1
4
and g{1} = 1

2
, for any sufficiently

small ε > 0.

Proof. (i) As can be seen from Figure 10(a), f guarantees an expected payoff

of 1
3
for the maximizer. Similarly, for the minimizer, g ensures that the expected

payoff will not exceed 1
3
. (ii) See Figure 10(b). The strategy f guarantees an

expected payoff of 1
2
. Similarly, for the minimizer, using g ensures that the

maximizer will never get more than 1
2
.

Intuitively, for α > 1
2
, the minimizer can announce to randomize strictly between

y = 1 and a bid slightly below α and thereby make it impossible for the maximizer

to avoid the payoff −1 with a bid different from x = 1. On the other hand, for

α ∈ (1
3
, 1
2
), the maximizer is in a better position compared to the Sion-Wolfe

game. Indeed, the knife-edge strategy y = 1
2
loses its strategic advantage for the

minimizer.

4.3 Conceptual Framework

We now use the insights obtained above to decompose the discrepancy between

finite-approximation values and the infinite-game lower/upper values. As before,

we start from the Sion-Wolfe game with kernelK. Given an approximating kernel

Kn defined on the unit square, let v(Kn) and v(Kn) denote the corresponding

infinite-game lower and upper values. Further, let min{Kn, K} denote the kernel

formed by the pointwise minimum of Kn and K, and the corresponding lower

value by v(min{Kn, K}). Analogously, let max{Kn, K} denote the kernel formed

by the pointwise maximum of Kn and K, and the corresponding upper value by

v(max{Kn, K}).

Proposition 6. The difference between v(n) on the one hand, and v and v on the

other, decomposes into several offsetting effects with definite signs, as visualized
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below:

v(n) v
(
max{Kn, K}

)

≤

≥ ≤ ≥

v(Kn) v

v(n) ≤ ≤

v(Kn) v

≥

≤ ≥ ≤
v(n) v

(
min{Kn, K}

)

Proof. All inequalities follow immediately from the respective definitions.

Each of the upper (lower) four inequalities represents an offsetting effect con-

tributing to the discrepancy between v(n) and v (between v(n) and v). It should

be noted that the respective differences all have a simple interpretation. We ex-

plain the four effects for the maximizer. First, v(n)−v(n) ≥ 0 is the maximizer’s

gain, starting from the finite game, from being able to play an unrestricted strat-

egy. Next, v(n)− v(Kn) ≥ 0 is the loss for the maximizer resulting from lifting

restrictions on the minimizer’s strategy. Third, v
(
max{Kn, K}

)
− v(Kn) ≥ 0 is

the gain in the upper value from replacing the approximating kernel Kn by the

modified kernel max{Kn, K} that approximates K from above. Fourth and fi-

nally, v
(
max{Kn, K}

)
−v ≥ 0 is the reduction in the upper value from replacing

the modified kernel max{Kn, K} by the original kernel K. The effects for the

lower values have analogous interpretations.

The logic underlying the proposition above is not entirely new, but extends

ideas already contained in Ville (1938). See also Bohnenblust et al. (1948) and

Ben-El-Mechaiekh and Dimand (2010). Indeed, in the case where the kernel does

not depend on n, the right part of the visualization in Proposition 6 collapses.
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Moreover, the assumption of continuity may be utilized to prove that the four

“error terms” v(n) − v(n), v(n) − v, v(n) − v(n), and v − v(n) all vanish as

n → ∞. Since Ville (1938) did not consider kernel approximations, his analysis

was necessarily limited to these four effects. Further, for the Sion-Wolfe game,

payoffs are not continuous, so that these error terms need not vanish in the limit.

We illustrate the decomposition implied by Proposition 6 with two examples:

Example 1. For the finite approximation in Proposition 2, we have K = Kn, so

that v(Kn) = v
(
max{Kn, K}

)
= v and v(Kn) = v

(
min{Kn, K}

)
= v. From the

discussion following Proposition 1, we know that the minimizer has an optimal

strategy in the infinite game with mass points at 0, 1, and at some point that may

be chosen flexibly from a small neighborhood of 1
4
. Thus, an optimal strategy is

available for the restricted minimizer if n = 2k is sufficiently large. Therefore,

v(n) = v(Kn) = v for large enough n. Similarly, we obtain that v(n) = v(Kn) =

v. Hence, the limiting value of the finite approximations satisfies v∗ ∈ [v, v].

Example 2. For the finite approximation in Proposition 3(d), we have Kd
n ≥ K,

as is evident from Figure 10(b). Therefore, v(Kd
n) = v

(
max{Kd

n, K}
)
. Moreover,

from Proposition 5, we know that v(Kd
n) = v(Kd

n) =
1
2
. The same result shows

that for n = 2k + 1 chosen large enough, optimal strategies for both maximizer

and minimizer can be found with support contained in the respective finite grid.

Hence, v(Kd
n) = v(n) and v(Kd

n) = v(n), which implies that v(n) = v(n) = v(n)

in this case. Thus, the driving force behind the anomaly v∗ > v is the bias of the

approximating kernel Kd
n, while all other, potentially offsetting effects vanish.

Thus, in Example 2, the kernel approximation made to keep the qualitative

properties of the finite approximation is seen to be the “culprit” for the anomaly

observed as case (d) in Proposition 3.

22



5 Related Literature

Games without a value have been known for a long time. In Ville’s (1938) exam-

ple, players choose numbers from the unit interval to outbid each other, where

the payoff from the highest bid is modified to be strictly dominated. Similarly,

in Wald’s (1945) example, each player chooses a positive integer. The higher

number wins, and there is a draw if both players choose the same number. In an

interesting recent paper, Holzman (2023) characterizes win-lose games without

value using dominance relationships.

A solution to the Sion-Wolfe game and similar games can be obtained by

modifying the game. This holds, for example, if one player is restricted to us-

ing an absolutely continuous strategy (Parthasarathy, 1970), or if players may

use probability measures that are not necessarily σ-additive (Yanovskaya, 1970;

Kindler, 1983), or if the payoff function is modified at points of discontinuity (Si-

mon and Zame, 1990; Boudreau and Schwartz, 2019). However, these approaches

do not constitute a solution to the original game.

Examples of zero-sum games on the square that have some similarity to the

Sion-Wolfe game appear in Carmona (2005), Duggan (2007), Monteiro and Page

(2007), Prokopovych and Yannelis (2014), and Boudreau and Schwartz (2019),

for instance. However, those papers pursue the more ambitious objective of

characterizing better-reply security (Reny, 1999) in the mixed extension.

A notable two-person zero-sum game is Silverman’s game (Evans, 1979; Heuer

and Leopold-Wildburger, 2012). The variety and depth of the game-theoretic

analysis of Silverman’s game contrasts with the elementary nature of the present

analysis. See, for example, Evans and Heuer (1992) and Heuer (2001). In terms

of results, however, the conclusions are often similar. Indeed, continuous variants
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of Silverman’s game need not possess a value, while discrete variants may often

possess an essentially unique equilibrium.

6 Conclusion

This paper makes two main contributions. First, Propositions 2 and 3 show

that the limits of approximating game values in the Sion-Wolfe game convey

little information about the lower and upper values of an infinite game. Sec-

ond, motivated by Propositions 4 and 5, Proposition 6 decomposes the observed

differences into several offsetting effects with definite sign. As the discussion of

Examples 1 and 2 reveals, in addition to optimal strategies against a restricted

or unrestricted opponent potentially not being available in the finite approxima-

tion, kernel approximations, whether upwards or downwards, may have a more

substantial impact on limiting values than one might expect. In sum, our find-

ings indicate that, even in two-person zero-sum games, caution is required when

using finite approximations to predict equilibrium play. However, since Propo-

sition 6 extends to other games in a straightforward way, the present paper also

provides a flexible tool for analyzing the sources of any discrepancies between

finite-game and infinite-game values more generally.
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