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1 Introduction

In the early years of game-theoretic research, fundamental contributions estab-
lished the existence of mized-strategy solutions for two-person zero-sum games
under increasingly general conditions (von Neumann, 1928; Ville, 1938; Wald,
1945; Glicksberg, 1952; Fan, 1952; Nikaido, 1954). This sequence of positive
results was interrupted when Sion and Wolfe (1957) presented a “topologically
simple” game on the unit without a value. The non-existence result reveals an
important limitation of the theory of infinite games. Since such limitations do
not arise in finite games, one might hope that an analysis of finite-grid approxi-
mations, as suggested by a large body of prior work aiming at the establishment
of conditions sufficient for the existence of a solution (Ville, 1938; Nikaido, 1954;
Dasgupta and Maskin, 1986; Simon, 1987; Hellwig et al., 1990), might similarly
provide insights into the strategic nature of infinite games without a value.

In this paper, we explore this idea by considering finite approximations of
the Sion-Wolfe game. Instead of probability measures on the unit interval, we
consider probability distributions over a finite grid. Moreover, to preserve quali-
tative properties of the infinite game, we adjust the payoff function in the finite
approximation where needed. Our main observation is that, as the number of
grid points tends to infinity and the payoff function approaches that of the con-
tinuous game, the values of the finite approximations need not align with the
lower and upper values of the infinite game. Instead, we find that the limiting
values of finite approximations may fall within, on the boundary of, or even out-
side the interval spanned by the infinite-game lower and upper values. This casts
doubt on the idea that finite approximations are generally suitable for predicting

the outcome of an infinite game.



To understand why the limits of finite game values are not indicative of the
solution of the infinite game, we consider variants of the original game where
only one player is restricted to choosing from a finite grid, similar to Liang et al.
(2023). Then, we study the robustness of the Sion-Wolfe game by shifting the
short diagonal in the definition of the kernel. We find that the Sion-Wolfe game is
highly sensitive to such perturbations. Equipped with these findings, we decom-
pose the observed discrepancy between the finite-game and infinite-game values
as a sum of several offsetting effects. Some of these effects mirror those in Ville’s
(1938) proof of the minimax theorem for continuous payoff functions defined
on the unit square, where they were shown to vanish. However, to explain the
anomaly that the limiting value of the finite approximations may lie even outside
the “interval of indeterminacy,” we identify additional effects. Specifically, those
additional effects are seen to be caused by kernel approximations that might look
innocuous at first sight.

The paper proceeds as follows. Section 2 reviews the Sion-Wolfe game. In
Section 3, we consider finite approximations. Section 4 discusses the findings.

The related literature is reviewed in Section 5. Section 6 concludes.

2 Review of the Sion-Wolfe Game

The game in question, illustrated in Figure 1, lives on the unit square (0 < x < 1
and 0 <y < 1), having the payoff kernel
1 ify<xory>x+%
K(z,y) = 0 ify:xory:x—i—%
-1 ifx<y<x+%.
One of the players, the mazimizer, chooses x, while the other player, the mini-

mazer, chooses .



Figure 1: The Sion-Wolfe game.

Let f and g denote probability measures on the unit interval. We will write
f(M) for the probability mass assigned by f to a measurable set M C [0,1]. If
M = {x} is a singleton with zq € [0, 1], then we will write alternatively f{zo}
for the probability mass assigned by f to xo. Analogous notation will be used

for g. The lower and the upper values of the game are defined as
v=swinf [ [ K(a.y)df(@)dg(y), and
f g
o= intsup [ [ K(a,y)dfa)dg(y).
9 f

respectively. Intuitively, v corresponds to the expected payoff in a sequential
setting in which the maximizer moves first by choosing a mixed strategy f, and
the minimizer, observing f (but not its pure-strategy realization), moves second
by choosing a mixed strategy ¢. Similarly, 7 corresponds to the expected payoff
in a sequential setting in which the minimizer moves first and the maximizer
second. As suggested by this interpretation, we certainly have v > v. The game
is said to have a wvalue if v = v.

The definitions of lower and upper value do not assume that the respective
optimization problems admit a solution. If, however, the supremum is attained

in the definition of v, then the corresponding f is called an optimal strategy for



the maximizer. An analogous terminology applies to the minimizer.
Proposition 1 (Sion and Wolfe, 1957).
(i) v= % ~ 0.33, and an optimal strategy for the maximizer is given by f{0} =
He ==
(it) v = 2 ~ 0.43, and an optimal strategy for the minimizer is given by g{3} =
7olst =7 and gf1} = 7.

Proof. See Sion and Wolfe (1957). O

Thus, v < 7, i.e., the game does not have a value. This fact is remarkable,
despite earlier examples of non-existence (Ville, 1938; Wald, 1945), because the
Sion-Wolfe game admits an interpretation in terms of a Colonel Blotto game
with two battlefields and a head start for one player (Sion and Wolfe, 1957,
pp. 301-302; Aspect and Ewerhart, 2022). The example therefore shows that
non-existence can arise even in games with practical significance.

For the subsequent analysis (esp. Example 1 below), it will be relevant that
the maximizer has an alternative optimal strategy given by f{0} = 3 and f{1} =
%. Similarly, the minimizer has an alternative optimal strategy in which the
mass point given by g{ i} = % is slightly shifted up or down. This is relevant
for our study because, under the assumptions that we are going to impose, these

alternative strategies will be available in approximating discretizations whereas

this need not be so for the strategies characterized in Proposition 1.

3 Finite Approximations

This section analyzes finite approximations of the Sion-Wolfe game. We start
with a “canonical” approximation (Subsection 3.1), take the limit (Subsection

3.2), and then explore several alternative approximations (Subsection 3.3).



asg 1 1 1 0 -1 -1 -1 0
a; 1 1 1 0 -1 (-1 -1 0 1
ag 1 1 0 -1 (-1{ -1 0 1 1
asz 1 0 -1({-1] -1 0 1 1 1
ay 0 -1 -1 -1 0 1 1 1 1
as -1 | -1 -1 0 1 1 1 1 1
a; -1 | -1 0 1 1 1 1 1 1
a; -1 0 1 1 1 1 1 1 1
Qag 0 1 1 1 1 1 1 1 1
G a a a3 a4 a; QA ay ag ¥

Figure 2: A finite approximation for n = 8.

3.1 A “Canonical” Approximation

Suppose that the players are restricted to choosing their strategies from a finite,

equidistant grid over [0, 1], defined by
ag < a; < ...<dap,

where a, = %, for v € {0,1,...,n}, for some positive integer n. Computing
payoffs using any approximating kernel K, : [0,1] x [0,1] — R of the infinite
game defines a finite two-person zero-sum game for any n. Since the strategy
sets are finite, the supremum and infimum operators in the definition of the
game values reduce to the maximum and minimum, respectively. Thus, by von
Neumann’s (1928) minimax theorem, each finite approximation has as a value
v(n). Moreover, optimal strategies for maximizer and minimizer exist and are
given by probability measures f, and g, over the finite grid {ao,...,a,}, re-
spectively. We may then consider the limiting value of the finite approximation,

v, = lim,,_,o v(n), provided the limit exists.



The payoff matrix of the finite approximation for n = 8 and K,, = K is illus-
trated in Figure 2. In line with the conventions used for the infinite game, we
assume that the maximizing player chooses columns and the minimizing player
chooses rows. To identify candidate solutions of such games, we found it instruc-
tive to apply iterated elimination of weakly dominated strategies (Aspect and
Ewerhart, 2022). Moreover, at the time of writing, there exists a very convenient
web tool that computes the complete solution of a given bimatrix game (Avis
et al.; 2010). The following proposition characterizes the game value and optimal

strategies of the finite approximation in the general case where n is even.

Proposition 2. (Finite approximation, n even) Let n = 2k, for some integer

k > 2. Then,
. . . . . _ 2 _ .
(i) the value of the finite approzimation is v°(n) = 2 = 0.40;

(i1) optimal strategies are unique, given for the mazimizer by fo{ao} = fu{ar_1}
2 and fo{a,} = 2, and for the minimizer by g.{ar—1} = go{ar} = + and

gn{an} = %

Proof. Figure 3 shows the relevant parts of the payoff matrix for n = 2k > 4,
where boxes corresponding to outcomes with positive probability in the candidate
strategies are shaded. Suppose the minimizer plays g,. Then, any pure strategy
x € {ag,ag_1,a,} yields an expected payoff of % Any alternative strategy for
the maximizer, be it * € {ay,...,ax 2}, © = ag, or = € {ary1,...,a,_1}, is
not a best response. Next, suppose that the maximizer plays f,. Then, any
y € {ax_1,ax, a,} yields an expected payoff of % Any alternative pure strategy
for the minimizer, whether y = ag, y € {a1,...,ax_2}, y € {ags1,...,an 2}, or

2

Yy = an1, fails to be a best response. Thus, the game indeed has the value :.

Moreover, by exchangeability, the support of any optimal strategy is contained



in {ag, ar_1,a,} for the maximizer and in {ay_1,ay, a,} for the minimizer. As

the submatrix of the payoff matrix restricted to these strategies is invertible,

optimal strategies are indeed unique. O]
y
a, 1 1 1 1 0 -1 -1 0
an-1 1 0 1
an, | 1 -1 1
A1 1 -1 1
ay 0 -1 ]...(-1] -1 0 1 e 1 1
ap-1 -1 -1 ]...| -1 0 1 1 .. 1 1
a2 -1 1 1
aq -1 1 1
Qo 0 1 1
x
ag aq e Qg A1 ap Oy a,_1 Qap

Figure 3: Proof of Proposition 2.

3.2 Taking the Limit

The value of the “canonical” approximation, v%(n) = %, remains constant when

we raise n = 2k. Thus, comparing with Proposition 1,

v < lim v°(n) < 7,
n—oo

i.e., the limiting value of the finite approximations v, = lim,,_,, v(n) lies, in the
case of the “canonical” approximation, strictly inside the interval formed by the
lower and upper values of the infinite game.

What about the limit of strategies? The optimal strategies found in Propo-

sition 2 are unique. Moreover, these optimal strategies assign probability % to



column x = a;_; and row y = a,_; which, for example, become suboptimal
when n doubles. As n increases, the strategy a;_1 approaches %, so regardless of
how the limit is taken, the limiting strategy profile in the infinite game loses key
qualitative properties of the finite solutions.

A rigorous analysis of the limiting behavior requires the specification of a
topology on the space of probability measures. Since Glicksberg (1952), it has
been standard to use the weak* topology, defined as the coarsest topology that
renders all mappings f — [ ¢(z)df(x) continuous, where ¢ : [0,1] — R may
be an arbitrary continuous function on the unit interval. If the limit of the
approximating strategies is taken with respect to the weak* topology, then the
corresponding limit strategies are given as f{0} = f{3} = £ and f{1} = 2 for

the maximizer, and by ¢g{5} = 2 and ¢g{1} = 2 for the minimizer. These limit
strategies are, however, not optimal in the infinite game. Indeed, by choosing
x = 1, the maximizer secures an expected payoff of % > v. Similarly, by choosing
y = 1, the minimizer ensures an expected payoff of % < w.

Alternatively, one may take the limit in the space of finitely additive set
functions equipped with the topology of pointwise convergence. By definition,
this is the coarsest topology for which all mappings f — [  df () are continuous,
for any measurable set M C [0, 1]. For instance, the limit set function for the
maximizer is characterized by f{0} = f((3—¢,3)) = £ for any sufficiently small

e>0and f{1} = g The limit of the approximating optimal strategies is not a

mixed strategy because the property of o-additivity is lost. Indeed,

103) =5 #0=D0(G - 55— ra)

Thus, the limiting set function is merely finitely additive (Yanovskaya, 1970). As

suggested by the discussion so far, this means that it is feasible to place mass ar-



bitrarily close to, but still below % While this idea may be intuitively appealing,
there is a downside of admitting finitely additive set functions. Specifically, as
Kindler (1983) explains, expected payoffs need not be well-defined if both players
use such generalized strategies, since the order of integration may matter in the
computation of expected payoffs. Intuitively, it is unclear which player wins, and

with what probability, if both players bid as close as possible, but still strictly

below %
¥ @) ¥ (k)
g 1 1 1 1 1 -1 (-1 |-1]|-1 0 g 1 1 1 1 0 0 -1 |-1|-1 0
ag 1 1 1 1 -1 -1 -1 -1 0 1 ag 1 1 1 Q 1] -1 -1 -1 1] 1
ay 1 1 1 -1 -1 -1 -1 0 1 1 as 1 1 0 0 -1 -1 -1 0 1 1
g 1 1 -1 |{-1|-1|-1 0 1 1 1 g 1 0 0 -1 (-1 |-1 0 1 1 1
as 1 -1 -1 -1 -1 0 1 1 1 1 as 0 0 -1 -1 -1 Q 1 1 1 1
ay -1 |-1|-1]-1 0 1 1 1 1 1 g 0 -1 (-1 /-1 0 1 1 1 1 1
az -1 |-1|-1 0 1 1 1 1 1 1 az -1 |-1]|-1 0 1 1 1 1 1 1
a2 -1 -1 0 1 1 1 1 1 1 1 az -1 -1 0 1 1 1 1 1 1 1
ay -1 0 1 1 1 1 1 1 1 1 ay -1 0 1 1 1 1 1 1 1 1
ay 0 1 1 1 1 1 1 1 1 1 » ag 0 1 1 1 1 1 1 1 1 1
ay @ az a3 a4 as 0 ag ag dg G ay az az @4 as Qs as ag g *
y (c) ¥ (d)
g 1 1 1 1 0 -1 |-1]|-1|-1 0 ag 1 1 1 1 1 0 -1 -1 (-1 ]
ag 1 1 1 0 -1 -1 -1 -1 0 1 ag 1 1 1 0 -1 -1 -1 0 1
az 1 1 0 -1|-1]-1]-1 0 1 1 a; 1 1 1 -1 (-1 |-1 0 1 1
ag 1 0 -1 |-1|-1]|-1 0 1 1 1 ag 1 1 0 -1 |-1]-1 0 1 1 1
as 0 -1|-1]-1]-1 0 1 1 1 1 as 1 0 -1 (-1 | -1 0 1 1 1 1
ay -1 |-1|-1]-1 0 1 1 1 1 1 ay o -1 |-1]-1 0 1 1 1 1 1
as -1 -1 -1 0 1 1 1 1 1 1 as -1 -1 -1 0 1 1 1 1 1 1
az -1 | -1 0 1 1 1 1 1 1 1 a; -1 | -1 0 1 1 1 1 1 1 1
ay -1 o 1 1 1 1 1 1 1 1 ag -1 1 1 1 1 1 1 1 1
ag 0 1 1 1 1 1 1 1 1 1 ag ] 1 1 1 1 1 1 1 1
x x
ayp a1 az az @ as; @ ag ag Og ag a; a3 a3 @3 as G5 aj ag dg

Figure 4: Finite approximations when n = 9.

3.3 Alternative Approximations

We now consider the case where n = 2k+1 is odd. Here, identifying a “canonical”
approximation is less straightforward. Figure 4 illustrates a variety of approxi-
mations in the case n = 9 and k = 4. In panel (a), we depict the payoff matrix

in the case in which the original kernel is kept. However, the short diagonal,

10



defined by the set of strategy combinations (x,y) satisfying y = = + %, vanishes,
because when n is odd, there is no solution in the finite lattice. In panels (b)
through (d), the original kernel K has been modified to reintroduce the short
diagonal. In panel (b), this is done symmetrically. In panels (b) and (c), how-
ever, an advantage is given to either the minimizer or the maximizer. Kernels
on the unit square extending these examples to general odd n = 2k + 1 are given

as follows:

Ki(v,y) = K(z,y)
1 ify<:r;ory>;c+%
Kz(ﬂf,y) = 0 ify:worx+%§y§x+%
—1 ifx<y<q;—|-§
1 ify<zory>az+ kL

n

k+1
n

K (x,y) = 0 ify=zory=x+
-1 ifz<y<az+id

1 ify<xory>x+§

| 1 ifa:<y<x+§
It should be noted that, in contrast to the case where n is even, the kernels

defined above may depend on n. In analyzing the approximations for odd n, we

focus on the game values, while optimal strategies are characterized in the proof.

Proposition 3 (Finite approximation, n odd). Let n = 2k+1 for some inte-
ger k > 2. Then, the respective values of the finite approximations corresponding

to kernels K, K, K¢

n’

and K are given by v*(n) = 2 ~ 0.43, v(n) = 2 = 0.40,

v(n) = 3 ~ 0.33, and v*(n) = 5 = 0.50.

Proof. For each of the four kernels, referred to below as cases, the proof proceeds

by identifying a pair of mutual best responses.

11



Case a. Suppose that the minimizer selects g, {ar} = 2, gn{ari1} = 2, and
gnian} = %. Then, from Figure 5, it is evident that any = € {a,...,ax_1} is
strictly inferior to & = ag, while x = a1 as well as any = € {agi2,...,a,-1} are
strictly inferior to & = a,,. Hence, the maximizer’s pure best responses are ay,
ag, and a,. Next, suppose that the maximizer selects f,{ag} = %, fo{ar} = %,
and f,{a,} = %. Then, y = ag is strictly inferior to y = a;, and the same is true

for any y € {ay,...,ax_1}. In contrast, any y € {ag,...,a,} is a best response

for the minimizer. In particular, ax, a1, and a, are best responses.

y
a [ ] ] [afa]-a]a]--[1]0
a, 1 1 -1 1
Apy2 1 -1 1
@Gq | 2| -1 |---]-2 |2 0|1 |...[1]|1
a |-1|-1|...|-2fo0o |2 |21 ]|...]1]|1
ay_q -1 1 1
a; -1 1 1
ay 0 1 1
x
ay a; v Qgeq A Ayl Qg o Ap1 Ay

Figure 5: Case a.

Case b. See Figure 6. If the minimizer chooses g,{ar-1} = go{ar} = % and
gnian} = %, then any x € {ag, ax, a, } yields an expected payoff of % Alternative
strategies such as = € {ay,...,ap_2}, * = ag, and = € {ags2,...,a,_1} yield
a strictly lower expected payoff. The strategy x = axy1 is an alternative best
response. If the maximizer chooses fo{ao} = fo{ar—1} = 3 and fo{a,} = 2,
then any y € {ax_1,ax, a,} yields an expected payoff of % Strategy y = api1
is an alternative best response. Any other strategy, be it y € {ag,...,ax_o} or

y € {ag42,...,a,} is not a best response for the minimizer.

Case c. Sce Figure 7. If the minimizer selects g,{ar} = 3 and g,{a,} = 2,

12



a (2] 1] 1 ]a]o]o]-1] [-1] o
Qp-1 1 0 1
a, o 1 0 1
ap3 | 1 -1 1
gz | 1 -1 1
[« Py 0 -1 1

a o |-1|---|-1|-2]0 | 2|21 |-.-| 1|1
@y | 22|10 |11 |1]---|1][12
agp | -1 1 1

a; -1 pee 1 - 1

ag 0 - 1 P 1

X
Qy ay v Gy Qg M Gpyg Oz Gpo1 Gy

Figure 6: Case b.

then both © = a9 and * = a,, yield an expected payoff of % Strategies x €
{ai,...,ax_o} are alternative best responses. The strategy z = aj_», and any
x € {ak,...,a,_2} is not a best response. If the maximizer chooses f,{ap} = %

and f,{a,} = %, then both y = a;_; and y = a,, yield an expected payoff of %

Strategies y € {a,...,a,_2} are alternative best responses. Any other strategy,
be it y = ag, y = ay, or y € {ags1,...,a,-1} is not a best response for the
minimizer.
y

an 1| 1o [1]o0

a, 1 1 1

Ayt 1 1

ag 0 1

Q1 | -1 —1|...|—1|o|1|...|1 1

ag—2 | -1 1

a -1 1

a, 0 1

ag aq ap_o ap_1 ay a, 1 an x

Figure 7: Case c.
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Case d. See Figure 8. If the minimizer selects g,{ar} = g.{a,} = %, then
any x € {ao, a, a,} yields an expected payoff of % The strategy © = a1 is an
alternative best response, while z € {ay,...,a,—1} and x € {agt2,...,a,—1} yield
a strictly lower expected payoff. If the maximizer selects fn.{ao} = fu{ar} = 1
and f,{a,} = 3, then both y = a; and y = a, yield an expected payoff of

Strategies y € {a1,...,a5_1} and y € {ag41,...,a,—2} are alternative best

N

responses, while y = ag or y = a,,_1 is not a best response for the minimizer. [

y
a 21| 2 ]a]o]-1]...[1]0
1| 1 0 1
a,, | 1 -1 1
Ay | 1 -1 1
a [o|-1]...[-1]ofa]a]...[2]1
a1 | -1 1 1
a; | -1 1 1
a | 0 1 1
@Gy @1 . Gy Bk Qg Bz e Gpg B Y

Figure 8: Case d.

Thus, when the original kernel is kept, corresponding to panel (a) in Figure 4,
the value of the finite approximation equals the upper value of the infinite game,
i.e., v*(n) = v. In the unbiased case, corresponding to panel (b), the game value
matches the case of even n, lying strictly within the interval formed by the lower
and upper values of the infinite game. If the kernel is biased in favor of the
minimizer, corresponding to panel (c), we obtain the lower value of the infinite
game, i.e., v°(n) = v. Somewhat unexpectedly, however, if the kernel is biased
toward the maximizer, corresponding to panel (d), the game value of the finite

approximation strictly exceeds the upper value of the infinite game, i.e.,

7 < lim v¥(n).
n—oo

14



As mentioned in the Introduction, this possibility is undesirable because it im-
plies that values of the finite games do not even allow one to put a bound on
infinite-game lower or upper values.

Dasgupta and Maskin (1986) noted that the Sion-Wolfe game does not admit
an e-equilibrium, for € > 0 small enough. However, there is no connection
between the limiting values not corresponding with the continuous case and the
lack of e-equilibria for the Sion-Wolfe game. Instead, as shown by Tijs (1977),
the non-existence of e-equilibria is a general property of two-person zero-sum
games that do not have a value. In fact, a two-person zero-sum game has a value
if and only if it admits an e-equilibrium for any € > 0. In particular, there is no
obvious link between the non-existence of e-equilibria to the anomaly captured

by Proposition 3(d).

4 Discussion

In this section, we examine the observed differences between the finite-game
limiting values and the infinite-game lower and upper values. We first derive
the solution of the game in which only one player is restricted to choosing from
a finite grid (Subsection 4.1). Next, we study the robustness of the Sion-Wolfe
game (Subsection 4.2). Finally, we use the insights thereby obtained to examine

the anomaly observed in Proposition 3 (Subsection 4.3).

4.1 Restricting One Player’s Strategy Choice

Unlike the previous setup, we now assume that one player’s strategy is restricted
to a finite grid, while the other player’s strategy remains unrestricted. Consider
first the case where the mazimizer is restricted, corresponding to panel (a) of

Figure 9. Let n be a positive integer, and let K, be an approximating kernel,

15
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| [ |
| [ |
| [ |
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X Qo X
Qg Q-1 Apyq ap_1Qn

Figure 9: One player’s strategy is restricted to the finite grid.

which is henceforth assumed to be measurable and bounded on the unit square.

Then,

o(n —supmf/ K (2, y)dfo(2)dg(y)

is the (lower) value of the game in which the maximizer chooses a probability
measure f, over the finite grid {ao, ..., a,}, while the minimizer chooses a prob-
ability measure g over the unit interval [0, 1]. Similarly, consider the case where

the minimizer is restricted, corresponding to panel (b). Then,

v(n 1nfsup/ K, (x,y)df (x)dgn(y)

9n

is the (upper) value of the game in which the minimizer chooses a probabil-
ity measure g, over the finite grid {ao,...,a,}, while the maximizer chooses a
probability measure f over the [0, 1].

Peck (1958) established a general minimax theorem for games in which the
strategy set of one player is finite. While that result assumes that both players
choose finitely supported probability measures fi" and ¢, it still implies that

the two games just introduced have a value. For example, for the game in which

16



the maximizer is restricted, we have

suplnf/ K, (x,y)df,(x)dg(y) = S]lclplgnf/ Ky (x,y)dfo(x)dg™ (y)

v

mfsup/ Ko (2, y)df(z)dg™ (y)

Peck (1958)

> 1nfsup/ K (2, y)dfn(z)dg(y),

which proves the claim. The argument for the game in which the minimizer is

restricted is analogous. The relevance for the present study is that the values v(n)

and 7(n) are game values, i.e., there are no counterparts worthwhile studying,.
The following result characterizes the solution of these games, where attention

is restricted to the case of even n.

Proposition 4. Let n = 2k, for some integer k > 1. Then,

(i) v(n) = 5, with optimal strategies for the mazimizer given by fo{ao} = %

and fo{a,} = %, and for the minimizer by g{”Q—:L1 = % and g{1} = %;

(ii) v(n) = %, with optimal strategies for the mazimizer given by f{0} = %;
HASEY = %, and f{1} = 2, and for the minimizer by g,{ar—1} = %

gn{ak} = %7 and gn{&n} = %

Proof. (i) Suppose the minimizer plays g. Then, as is evident from Figure 9(a),
the maximizer’s expected payoff is % for any pure strategy = € {ag,..., a1}
The same is true for x = a; and x = a,. In contrast, the expected payoff from
any r € {agy1,...,an_1} is strictly lower. Hence, f, is a best response to g.
Next, assume that the maximizer chooses f,. Then, the expected payoff is %
for y € (0, %) and for y = 1, whereas the expected payoff is strictly higher for
any choice of y € [0,1]. Hence, g is also a best response to f,. (ii) See Figure

9(b). If the minimizer chooses g,, then the maximizer’s expected payoff is % from
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pure strategies x = 0, x € (k—;l, %), and z = 1, whereas the expected payoff is

strictly lower for any other pure strategy. Noting that ”2—;1 lies exactly halfway
between % and %, we see that f is a best response to g,. On the other hand,
if the maximizer plays f, then the expected payoff is % for the pure strategies
y = ag, y € {ai1,...,a;}, and y = a,, while the expected payoff is strictly

higher otherwise. Thus, ay_1, ai, and a, are best responses for the minimizer,

completing the proof. n

These observations are in line with the intuition, reviewed in the previous section,
that the outcome of the Sion-Wolfe game hinges on which player will be able to
bid closest to, but still below % Specifically, if the maximizer’s choice is restricted
to the finite grid, while the minimizer’s choice is unrestricted, then the game value
equals the lower value of the Sion-Wolfe game, i.e., v(n) = v. Intuitively, the
maximizer has an incentive to marginally overbid the minimizer’s lower bid, but
is unable to do so because a;_1 < "2—;1 < ap = %, i.e., because of the restrictions
imposed by the finite grid. However, if the minimizer’s choice is restricted to
the finite grid, while the maximizer’s choice is unrestricted, then the game value
equals the upper value of the Sion-Wolfe game, i.e., T(n) = v. In this case, it is
the minimizer who has an incentive to overbid the maximizer’s bid "2—;1, but is

unable to do so.

4.2 Robustness of the Sion-Wolfe Game

Consider the kernel

1 ifr>yorz<y+a
K. (z,y) = 0 fr=yorxz=y+a«a
-1 ifr<y<z+a,

where o € (0,1) is a parameter that corresponds to the vertical position of the

short diagonal. The Sion-Wolfe game has a = % In the case a > %, illustrated
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in panel (a) of Figure 10, the short diagonal is shifted up compared to the Sion-
Wolfe game. An example is K, where o = % In the case a0 < %, illustrated in

panel (b), the short diagonal is shifted down. An example is K¢, where a = %

(a) (b)

+1

Figure 10: Variants of the Sion-Wolfe game.

As our next result reveals, the non-existence of a value in the case o« =

N

is an isolated phenomenon. For this, let v(K,) and v(K,) denote the infinite-
game lower and upper values associated with the kernel K,. It will be useful
to describe a continuum of optimal strategies. Specifically, as in the discussion
following Proposition 1, this will allow us to choose an optimal strategy from an

approximating grid (cf. Example 2 below).
Proposition 5.

(i) If a € (3,1), then v(K,) = 0(K,) = %, with optimal strategies for the
mazimizer given by f{0} = 5 and f{1} = 2, and for the minimizer by
g{a—e} =% and g{1} = 3, for any sufficiently small & > 0;

(it) if o € (3,3), then v(K,) = U(Ko) = 3, with optimal strategies for the

mazimizer given by f{0} = f{i +¢e} = 1 and f{1} = 3, and for the
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minimizer by g{o — e} = g{2a —e} = 1 and g{1} = 3, for any sufficiently

small € > 0.
Proof. (i) As can be seen from Figure 10(a), f guarantees an expected payoff
of % for the maximizer. Similarly, for the minimizer, g ensures that the expected
payoff will not exceed % (ii) See Figure 10(b). The strategy f guarantees an
expected payoff of % Similarly, for the minimizer, using ¢ ensures that the

maximizer will never get more than % ]

Intuitively, for a > %, the minimizer can announce to randomize strictly between
y = 1 and a bid slightly below v and thereby make it impossible for the maximizer
to avoid the payoff —1 with a bid different from x = 1. On the other hand, for
a € (%, %), the maximizer is in a better position compared to the Sion-Wolfe
game. Indeed, the knife-edge strategy y = % loses its strategic advantage for the

minimizer.
4.3 Conceptual Framework

We now use the insights obtained above to decompose the discrepancy between
finite-approximation values and the infinite-game lower /upper values. As before,
we start from the Sion-Wolfe game with kernel K. Given an approximating kernel
K, defined on the unit square, let v(K,) and (k) denote the corresponding
infinite-game lower and upper values. Further, let min{ K,,, K} denote the kernel
formed by the pointwise minimum of K, and K, and the corresponding lower
value by v(min{ K,, K}). Analogously, let max{K,, K} denote the kernel formed
by the pointwise maximum of K,, and K, and the corresponding upper value by
v(max{K,, K}).

Proposition 6. The difference between v(n) on the one hand, and v and on the

other, decomposes into several offsetting effects with definite signs, as visualized
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below:

o(n) v(max{K,, K})
Q & Q
Ly
v(K,) v
U(TL) VI VI
v(Kny) v
¥ 5 Q 7
v(n) Q(min{Kn, K})

Proof. All inequalities follow immediately from the respective definitions.  [J

Each of the upper (lower) four inequalities represents an offsetting effect con-
tributing to the discrepancy between v(n) and v (between v(n) and v). It should
be noted that the respective differences all have a simple interpretation. We ex-
plain the four effects for the maximizer. First, v(n)—wv(n) > 0 is the maximizer’s
gain, starting from the finite game, from being able to play an unrestricted strat-
egy. Next, v(n) —v(K,) > 0 is the loss for the maximizer resulting from lifting
restrictions on the minimizer’s strategy. Third, v(max{K,, K}) — v(K,) > 0 is
the gain in the upper value from replacing the approximating kernel K,, by the
modified kernel max{K,, K} that approximates K from above. Fourth and fi-
nally, E(max{Kn, K }) —7v > 0 is the reduction in the upper value from replacing
the modified kernel max{K,, K} by the original kernel K. The effects for the
lower values have analogous interpretations.

The logic underlying the proposition above is not entirely new, but extends
ideas already contained in Ville (1938). See also Bohnenblust et al. (1948) and
Ben-El-Mechaiekh and Dimand (2010). Indeed, in the case where the kernel does

not depend on n, the right part of the visualization in Proposition 6 collapses.
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Moreover, the assumption of continuity may be utilized to prove that the four
“error terms” ©(n) — v(n), v(n) — T, v(n) — v(n), and v — v(n) all vanish as
n — oo. Since Ville (1938) did not consider kernel approximations, his analysis
was necessarily limited to these four effects. Further, for the Sion-Wolfe game,
payoffs are not continuous, so that these error terms need not vanish in the limit.

We illustrate the decomposition implied by Proposition 6 with two examples:

Example 1. For the finite approzimation in Proposition 2, we have K = K,,, so
that v(K,,) = v(max{K,, K}) =7 and v(K,) = v(min{K,, K}) = v. From the
discussion following Proposition 1, we know that the minimizer has an optimal
strategy in the infinite game with mass points at 0, 1, and at some point that may
be chosen flexibly from a small neighborhood of }l. Thus, an optimal strategy is
available for the restricted minimizer if n = 2k is sufficiently large. Therefore,
v(n) =0(K,) =70 for large enough n. Similarly, we obtain that v(n) = v(K,) =

v. Hence, the limiting value of the finite approximations satisfies v, € [v,7].

Example 2. For the finite approzimation in Proposition 3(d), we have K¢ > K,
as is evident from Figure 10(b). Therefore, v(K?) = v(max{KZ, K}). Moreover,
from Proposition 5, we know that v(K¢) = v(K?) = §. The same result shows
that for n = 2k + 1 chosen large enough, optimal strategies for both mazimizer
and minimizer can be found with support contained in the respective finite grid.
Hence, v(K%) = v(n) and v(K?%) = v(n), which implies that v(n) = v(n) = v(n)

in this case. Thus, the driving force behind the anomaly v, > v is the bias of the

approzimating kernel K¢, while all other, potentially offsetting effects vanish.

Thus, in Example 2, the kernel approximation made to keep the qualitative
properties of the finite approximation is seen to be the “culprit” for the anomaly

observed as case (d) in Proposition 3.
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5 Related Literature

Games without a value have been known for a long time. In Ville’s (1938) exam-
ple, players choose numbers from the unit interval to outbid each other, where
the payoff from the highest bid is modified to be strictly dominated. Similarly,
in Wald’s (1945) example, each player chooses a positive integer. The higher
number wins, and there is a draw if both players choose the same number. In an
interesting recent paper, Holzman (2023) characterizes win-lose games without
value using dominance relationships.

A solution to the Sion-Wolfe game and similar games can be obtained by
modifying the game. This holds, for example, if one player is restricted to us-
ing an absolutely continuous strategy (Parthasarathy, 1970), or if players may
use probability measures that are not necessarily o-additive (Yanovskaya, 1970;
Kindler, 1983), or if the payoff function is modified at points of discontinuity (Si-
mon and Zame, 1990; Boudreau and Schwartz, 2019). However, these approaches
do not constitute a solution to the original game.

Examples of zero-sum games on the square that have some similarity to the
Sion-Wolfe game appear in Carmona (2005), Duggan (2007), Monteiro and Page
(2007), Prokopovych and Yannelis (2014), and Boudreau and Schwartz (2019),
for instance. However, those papers pursue the more ambitious objective of
characterizing better-reply security (Reny, 1999) in the mixed extension.

A notable two-person zero-sum game is Silverman’s game (Evans, 1979; Heuer
and Leopold-Wildburger, 2012). The variety and depth of the game-theoretic
analysis of Silverman’s game contrasts with the elementary nature of the present
analysis. See, for example, Evans and Heuer (1992) and Heuer (2001). In terms

of results, however, the conclusions are often similar. Indeed, continuous variants
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of Silverman’s game need not possess a value, while discrete variants may often

possess an essentially unique equilibrium.

6 Conclusion

This paper makes two main contributions. First, Propositions 2 and 3 show
that the limits of approximating game values in the Sion-Wolfe game convey
little information about the lower and upper values of an infinite game. Sec-
ond, motivated by Propositions 4 and 5, Proposition 6 decomposes the observed
differences into several offsetting effects with definite sign. As the discussion of
Examples 1 and 2 reveals, in addition to optimal strategies against a restricted
or unrestricted opponent potentially not being available in the finite approxima-
tion, kernel approximations, whether upwards or downwards, may have a more
substantial impact on limiting values than one might expect. In sum, our find-
ings indicate that, even in two-person zero-sum games, caution is required when
using finite approximations to predict equilibrium play. However, since Propo-
sition 6 extends to other games in a straightforward way, the present paper also
provides a flexible tool for analyzing the sources of any discrepancies between

finite-game and infinite-game values more generally.
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